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Abstract. The equation of motion of a spinless quantum particle in an external uniform 
parallel electromagnetic field is derived from the symmetry of the field by group theoreti- 
cal techniques. The minimal coupling is obtained directly, without a detour via the free 
particle equation. This derivation, which is valid in a Galilean as well as in a PoincarC 
framework, is a contribution to the recasting process of quantum mechanics in the spirit of 
a paper by LCvy-Leblond. 

1. Introduction 

In the recasting process of quantum mechanics the traditional, but heuristic, cor- 
respondence principle is gradually being replaced by the invariance principle. This is 
mainly due to the work of LCvy-Leblond (1971, 1974, 1975) who derived, in parti- 
cular, the Schrodinger equation of a free particle from Galilean invariance just like the 
free Klein-Gordon equation can be derived from PoincarC invariance, as has been 
(implicitly) known since Wigner (1939). The next step in that recasting process 
obviously leads to the principle of minimal electromagnetic coupling. This principle 
says that the equation of motion of a charged particle in an external electromagnetic 
field will be obtained from the free equation by the substitutions 

and ia, + id, - e 0  -iV + -iV - e A  

where CP and A are the scalar and vector potentials of the field. 
Traditionally the minimal coupling has been introduced in quantum mechanics by 

an argument of correspondence to classical mechanics. This is still the usual textbook 
‘derivation’. In the course of the recasting process another derivation, has been given 
by Jauch (1964) who introduced an argument of pseudo-invariance under ‘instan- 
taneous’ Galilei transformations. His derivation has been remodelled, generalised 
and criticised by several authors (Jauch 1968, LCvy-Leblond 1970, 1971, 1974, Piron 
1972, Celeghini et a1 1976, Kraus 1977) but a satisfactory analogue for PoincarC 
relativistic quantum systems has not been given. 

Jauch’s derivation has in common with the traditional one, that it starts from the 
free particle equation. The arguments by which the free equation is modified are 
different: (pseudo-)invariance principle versus correspondence principle. Although 
Jauch’s pseudo-invariance principle may be the best argument available in the general 
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case of arbitrary fields breaking all space-time symmetry, it is in fact a ‘waste’ of 
invariance in important cases of special fields preserving a part of that symmetry. 

Particularly, a uniform (i.e. homogeneous in space and constant in time) elec- 
tromagnetic field is invariant under a six-parameter subgroup of the ten-parameter 
Galilei or PoincarC symmetry group of the empty space-time (Janner and Ascher 
1970, Bacry et a1 1970a, b, see also the extensive discussion on Galilean electromag- 
netism in Le Bellac and LCvy-Leblond 1973). In this paper the equation of motion of 
a spinless charged particle in a uniform external field will be derived from that 
six-parameter subgroup just as the free equation can be derived from the full ten- 
parameter symmetry group, in the spirit of LCvy-Leblond’s (1974) approach. The 
minimal coupling will be obtained directly, without a detour via the free particle 
equation. The point is that this result follows from exact rather than from pseudo- 
invariance and that it is valid in a Galilean as well as in a PoincarC framework. 

The restriction to uniform fields is the price that has to be paid for keeping 
‘enough’ space-time symmetry so that group theory can be usefully applied. As the 
invariance group of a uniform field does not contain the three-dimensional rotation 
group one cannot expect to find the spin as a quantum number; this explains the 
restriction to spinless particles. 

Actually, the derivation will be given here only for uniform parallel fields (EIIB; 
possibly with E or B vanishing). This restriction is less stringent than it seems to be, 
because most uniform fields can be brought into this form by a suitable coordinate 
transformation, the only exceptions being the uniform crossed fields ( E  I B and 
E’ = B2 # 0) in a PoincarC frame. 

The group G that we will consider in this paper leaves a uniform electromagnetic 
field with E and B parallel to the z axis invariant. However, G is not the full 
symmetry group of a parallel field, as we will disregard the inversions (and in the 
Galilean case of a pure electric field we will even disregard the pure Galilei trans- 
formations in the x - y  plane). The representations of G were classified by Bacry et a1 
(1970a, b) who also noted the relation of these representations to the equation of 
motion. 

This paper is organised as follows. In 0 2 all those ingredients are assembled that 
can be obtained by group theoretical methods only. In 0 3 a description in configura- 
tion space is given and the equations of motion are derived. The last section contains 
a discussion on the physical input in 0 3. 

The present derivation results from a more comprehensive investigation of 
representations of symmetry groups in quantum mechanics (Hoogland 1977). 

2. Group theoretical preliminaries 

Let G be the subgroup of the Galilei (or PoincarC) group generated by the translations 
in space-time, the rotations around the z axis and the pure Galilei (or Lorentz) 
transformations in the z direction. This group G will be called briefly the invariance 
group, as it leaves a uniform electromagnetic field with E and B parallel to the z axis 
invariant. 

In the present case it is quite handy to use a Minkowski-like two-vector notation in 
the t-z plane and the usual vector notation in the x - y  plane. By this notation the 
Galilei and PoincarC groups can be treated simultaneously and the structure of G is 
manifestly displayed as the direct product of the one-(space-) dimensional Galilei (or 
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PoincarC) group (notation 9'') or .P(')) operating in the t-z plane and the two- 
dimensional Euclidean group (notation '8''') operating in the x - y  plane. So the 
space-time events x and the group elements g are denoted by 

x = ( x " ;  x), g = (ap,  x ;  a, 4) (1) 

where 

x * = ( i ) ,  x = ( J ) ,  a&=(::), a=(: : ) .  

Here the a are the translations; 4 is the rotation angle; 

V (Gal) 
= { tanh-' v (Poin) 

where v is the velocity of the pure Galilei (or Lorentz) transformations. The group G 
operates on space-time by 

g x = ( A ~ " O y ) x Y + a , , ; R ( 4 ) x + a )  (4 1 
where 

(sin 4 cos 4 
and 

The group product reads 

g'g = (a',, +A@u(,y')a", x ' + x ;  U' +R(d')a,  4'+4). (7) 

The group elements can be expressed in terms of the six infinitesimal generators Pt, Px, 
P,, P,, J and K by 

g = exp(ia@P,,) exp(iXK) exp(-ia . P) exp(-i4J) (8) 

[P,, K ]  = -iP, (9 1 
[P,, K ]  = -iPr (Poin) ( loa )  

where a "P,, = arPr - a,P, and a .  P = axP, + ayPy. The non-vanishing commutators are 

[J, P, J = iPy 

[J, Py J = -iP,. 

In order to obtain the projective representations of a group one has to go through a 
rather technical procedure of extension of its Lie algebra and calculation of its 
exponents (Bargmann 1954, Ltvy-Leblond 1971, 1974). Fortunately, in the present 
case one can profit from the structure of the six-parameter group G as a direct product 
of the two three-parameter subgroups 9") (or 9"')) and @'). The Lie algebras of these 
subgroups can be extended very easily indeed (Ltvy-Leblond 1969, 1974). After a 
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redefinition of the translation generators the result is given by (9), (13) and ( lob)  (or 
( loa))  for 3") (or 9")) and by ( l l ) ,  (12) and (14) for $(*) (E, p and CL are reals): 

[P,, Pz] = -ie (13) 

[P,, K ]  = -iF (Gal) ( lob)  

[Px, Py]  = -ip. (14) 

By splitting the Lie algebra of G in two 'disjoint' subalgebras before the extension 
process, we have omitted the 'mixed' commutators [K, J ]  = A  and (only for Galilei) 
[P,, J ]  = A ' ,  although these do not vanish in a general extension of the whole Lie 
algebra of G. However, not all extensions of the Lie algebra of G correspond to 
extensions of the multiply connected (!) Lie group G itself. (This is analogous to the 
situation for the two-dimensional Galilei group: see p 240 of LCvy-Leblond (1971) 
and 0 5 of de Swart (1974).) Only those extensions in which the mixed commutators 
vanish play a role in the determination of the projective representations of the 
invariance group G, as can be shown by the following argument. The element gl of the 
form (Ow, 0; 0,27r) corresponds to the unit element in the invariance group G;  it 
belongs to the kernel of the covering epimorphism from G* (the covering group of G) 
onto G. Hence, from 0 3e of Bargmann (1954) it follows that the operator U(gl)= 
exp(- i2~J)  has to be a multiple of the unit operator. In particular, exp(-i27rJ) should 
commute with the generators K and P,. On the other hand, from [K, J ]  = A  it follows 
that exp(- i2~J)K exp(+i27rJ) = K + i21rA. This proves that A = 0. Hence, the mixed 
commutators [K, J ]  and, analogously, [Pr, J] vanish. The extended Lie algebra of the 
invariance group G is thus given by (9)-(14) (see also Combe and Richard 1973). 

It can be checked easily that the operators Cl, and CL defined by 

CL = P': -I- Pi - 2pJ  (16) 

are invariants (Casimir operators) of the extended Lie algebra (9)-(14), i.e. they 
commute with all generators. Hence, in an irreducible (unitary) representation these 
are (real) multiples of the unit operator. Combination of (15) and (16) gives 

2ppf} = P', +Pi + Ps - 2(eK + p J ) +  Cll- C,. (Gal) 
(Poin) p: 

This relation will result in the equation of motion, as soon as the explicit expressions 
for the generators in configuration space are known (see the next section). 

The group exponents 6 occurring in a projective representation U by 

can be calculated from the extended Lie algebra. 
In a sophisticated method for the calculation of group exponents one uses the 

Campbell-Baker-Hausdorff relation (LCvy-Leblond 1971, p 241). A more 'down to 
earth' method by explicit matrix expressions has been given by LCvy-Leblond (1974, 
p 111). Both methods can be applied straightforwardly in the present case. Due to 
the above-mentioned 'disjointness' property of the extended subalgebras the 
exponents 6 of G are a linear combination of the exponents of $9") (or 9"') and $(*), 

so the actual calculation of the exponents may be carried out separately for these 
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subgroups. The explicit expressions that will be obtained for the exponents depend on 
the phase convention adopted for the operators U(g). For that reason different group 
parametrisa..:ons give different, but equivalent (Bargmann 1954), exponents. 

With the parametrisation (8) and the extended Lie algebra (9)-(14) one obtains 
(see also LCvy-Leblond 1969, Combe and Richard 1973) 

(21) 
f (a:a , -a;a ,  -a;u‘a,) 

~ ( a ~ a , - a ~ a , ) c o s h ~ ’ + ~ ( a ~ a ,  -a:a,)sinh x‘ (Poin) 

0 1  
-1 0 

with E,, = ( ) 

3. Description in configuration space 

Consider a projective representation U(g) of the invariance group, operating on 
wavefunctions in configuration space as follows: 

(U(g)$)(gx) = (exp i@(g; x>>$(x)*  (23) 
The physical meaning of this equation will be discussed in the conclusion. The phase 
function 8 in (23) is related to the exponent 5 in (18). An easy calculation gives 

[(g’, g ) =  g x ) + e ( g ; x ) - w g ; x ) .  (24) 
Without loss of generality one may assume that 8(g; x = 0) vanishes. (If it does not 
vanish the operators U ( g )  may be redefined by multiplication by the phase factor 
exp(-ib(g; 0)), allowed by the projectivity of the representation.) Substitution of 
x = 0 in (24) gives then 

5(g’, g) = w ;  go). (25) 
Let h, be the translation from the origin ( x  = 0) to the space-time event x .  Substitu- 
tion of (8, h,) for (g’, g) in (25) gives 

[(g, k)= 8(g; x ) .  (26) 
Hence, without loss of generality one may assume that a projective representation in 
configuration space has the form 

(U(gM)(gx) = (exp i5(g, hx))$(X). (27) 
The translation h, is the group element (see equation (1)) with x = 0, 4 = 0 ,  a” = x ”  
and U = x. Substitution of this in the equations (19)-(22) gives 

(28) 
4€(U2f -a,z -aa,ut)+p(fu2t+uz) 

&[(a,r - a s )  cosh x + (a,r -a&) sinh x] (Poin). 
5(g, hx)=4Na x R(4N)Z + 



802 H Hoogland 

The infinitesimal generators can be calculated from (27)  and (28)  by differentiation of 
the operators V(g) in the unit element e of G. The calculation of P, will be given 
explicitly as an example: 

In this way one obtains the following results for the generators operating on the 
wavefunctions: 

It is easily checked that these expressions obey the commutation relations (9)-(14). 
Now we know the form in configuration space of the infinitesimal generators of a 

projective representation of the invariance group. Substitution of the explicit expres- 
sions (29) in equation (17)  gives (by an accurate bookkeeping of cross-terms!) 

From these equations it will be clear how the constants E, p, p, 
interpreted physically. Substitution of 

and C, should be 

2mV (Gal) 
(Poin) 

E=eE, p = e B ,  p = m ,  Cll-C,= 

in equation (30)  gives (after division by 2m for Galilei) the Schrodinger and Klein- 
Gordon equations for a particle with mass m and charge e (and internal energy V for 
Galilei) in an external uniform field with electric and magnetic vectors E and B along 
the z axis: 

(Gal) ia, - e @  = -(-iV- 1 eA) 2 + “Ir 
2m 

(id, -e@)’ = (-iV - eA)2 + m2 (Poin) 
where 

A = (-4 By, 4 Bx, -a Et). (33)  
The electromagnetic field is present in the equations (32)  by minimal coupling to its 
potential in the so called symmetric gauge (33).  This particular gauge is due to our 
conventions, expecially to our choice of exponents. If we had started from other 
group exponents, equivalent to (20)-(22), then we would have obtained the equations 

@ =  -1 2Ez, 
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(32) with the potential in a different gauge. It can be shown straightforwardly that any 
gauge can be obtained in this way. 

Besides the equations of motion we obtain from (16) the eigenvalue equation 

(-i& - eAX)’+ (-iaY - eA,)2 = CL (34) 

for the Landau (energy) levels of a charged particle in a magnetic field. 

4. Conclusion 

In order to convert the group theoretical operator identity (17) into the physical 
equation of motion (30) one has to know how the infinitesimal generators work in 
configuration space. In the free particle case this knowledge is provided by a Fourier 
transformation from momentum to configuration space (Levy-Leblond 1974, formula 
34). In the present case that approach does not work. Here it is equation (23) that 
contains the information, so the physical foundation of (23) is a crucial point in the 
derivation. If this foundation were not satisfactory then the sceptical reader, saying 
that I have put in the minimal coupling by hand through equation (23), would be right. 
I will show, however, that (23) is satisfactorily founded on quantum mechanical 
principles. 

It is obvious that (23) gives the most general transformation behaviour of a 
one-component wavefunciion + ( x )  under the operators V(g) ,  such that 

or, in other words, such that I+(x)I’ transforms as a scalar function. So equation (23) is 
equivalent to (35) which is a direct consequence of the interpretation of lt,b(x)1’ as a 
probability density. Equation (35) says nothing more than that the probability density 
I+(x)I2 transforms as a scalar function. Hence, it gives expression to the principle of 
locality which in the context of elementary quantum mechanics is a fundamental 
concept. 

By the way, also in the case of a free particle an argument of locality has been 
implicitly used in the derivation of the equation of motion. The Fourier trans- 
formation from momentum to configuration space is a rather ad hoc approach. Why 
not some other unitary transformation? The answer to this question is that one 
(tacitly) wants to obtain wavefunctions that transform locally, as in (35) and (23). It is 
only accidental that this result is obtained in the free case by a Fourier transformation. 
In the present case the expressions (29) for the generators in configuration space 
cannot be obtained by such a simple transformation (Hoogland 1977, p 88). 

The locality principle which is expressed by equation (23) is independent of any 
specific kind of interaction, and nothing is put in ‘by hand’ through this equation. 
Nevertheless, together with the superposition principle and the invariance principle 
(LCvy-Leblond 1974, 1975) locality implies the minimal electromagnetic coupling for 
a spinless quantum particle in an external uniform parallel electromagnetic field. 
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